318 research outputs found

    SuperUDF: Self-supervised UDF Estimation for Surface Reconstruction

    Full text link
    Learning-based surface reconstruction based on unsigned distance functions (UDF) has many advantages such as handling open surfaces. We propose SuperUDF, a self-supervised UDF learning which exploits a learned geometry prior for efficient training and a novel regularization for robustness to sparse sampling. The core idea of SuperUDF draws inspiration from the classical surface approximation operator of locally optimal projection (LOP). The key insight is that if the UDF is estimated correctly, the 3D points should be locally projected onto the underlying surface following the gradient of the UDF. Based on that, a number of inductive biases on UDF geometry and a pre-learned geometry prior are devised to learn UDF estimation efficiently. A novel regularization loss is proposed to make SuperUDF robust to sparse sampling. Furthermore, we also contribute a learning-based mesh extraction from the estimated UDFs. Extensive evaluations demonstrate that SuperUDF outperforms the state of the arts on several public datasets in terms of both quality and efficiency. Code url is https://github.com/THHHomas/SuperUDF

    A Stochastic Second-Order Proximal Method for Distributed Optimization

    Full text link
    In this paper, we propose a distributed stochastic second-order proximal method that enables agents in a network to cooperatively minimize the sum of their local loss functions without any centralized coordination. The proposed algorithm, referred to as St-SoPro, incorporates a decentralized second-order approximation into an augmented Lagrangian function, and then randomly samples the local gradients and Hessian matrices of the agents, so that it is computationally and memory-wise efficient, particularly for large-scale optimization problems. We show that for globally restricted strongly convex problems, the expected optimality error of St-SoPro asymptotically drops below an explicit error bound at a linear rate, and the error bound can be arbitrarily small with proper parameter settings. Simulations over real machine learning datasets demonstrate that St-SoPro outperforms several state-of-the-art distributed stochastic first-order methods in terms of convergence speed as well as computation and communication costs.Comment: 6 pages, 8 figure

    Tensorformer: Normalized Matrix Attention Transformer for High-quality Point Cloud Reconstruction

    Full text link
    Surface reconstruction from raw point clouds has been studied for decades in the computer graphics community, which is highly demanded by modeling and rendering applications nowadays. Classic solutions, such as Poisson surface reconstruction, require point normals as extra input to perform reasonable results. Modern transformer-based methods can work without normals, while the results are less fine-grained due to limited encoding performance in local fusion from discrete points. We introduce a novel normalized matrix attention transformer (Tensorformer) to perform high-quality reconstruction. The proposed matrix attention allows for simultaneous point-wise and channel-wise message passing, while the previous vector attention loses neighbor point information across different channels. It brings more degree of freedom in feature learning and thus facilitates better modeling of local geometries. Our method achieves state-of-the-art on two commonly used datasets, ShapeNetCore and ABC, and attains 4% improvements on IOU on ShapeNet. Our implementation will be released upon acceptance

    Learning Practically Feasible Policies for Online 3D Bin Packing

    Full text link
    We tackle the Online 3D Bin Packing Problem, a challenging yet practically useful variant of the classical Bin Packing Problem. In this problem, the items are delivered to the agent without informing the full sequence information. Agent must directly pack these items into the target bin stably without changing their arrival order, and no further adjustment is permitted. Online 3D-BPP can be naturally formulated as Markov Decision Process (MDP). We adopt deep reinforcement learning, in particular, the on-policy actor-critic framework, to solve this MDP with constrained action space. To learn a practically feasible packing policy, we propose three critical designs. First, we propose an online analysis of packing stability based on a novel stacking tree. It attains a high analysis accuracy while reducing the computational complexity from O(N2)O(N^2) to O(NlogN)O(N \log N), making it especially suited for RL training. Second, we propose a decoupled packing policy learning for different dimensions of placement which enables high-resolution spatial discretization and hence high packing precision. Third, we introduce a reward function that dictates the robot to place items in a far-to-near order and therefore simplifies the collision avoidance in movement planning of the robotic arm. Furthermore, we provide a comprehensive discussion on several key implemental issues. The extensive evaluation demonstrates that our learned policy outperforms the state-of-the-art methods significantly and is practically usable for real-world applications.Comment: Science China Information Science
    corecore